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Harsanyi’s utilitarianism via linear programming
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Abstract

A simple linear programming problem permits a brief and elementary proof of Harsanyi’s utilitarianism

theorem: a Paretian social welfare function must be a weighted (affine) sum of individual utility functions when

individual utilities and social welfare all take the Neumann–Morgenstern form. By adjusting the programming

problem slightly, we conclude that the weights on individual utilities are positive or semi-positive when more

demanding Pareto principles hold. The reasoning extends easily to cover sets of social choices that equal arbitrary

mixture spaces.
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1. Introduction

Harsanyi (1955) argued that if both social welfare and individual utility functions take the von

Neumann–Morgenstern (vNM) form, then any social welfare function that satisfies the Pareto principle

must be a weighted sum of individual utility functions. This cannot always be true, since for a society of

one individual with the utility U(p)=p1+2p2 for probabilities over two pure social choices, the social

welfare function 2p1+3p2 is Paretian but not a scalar multiple of U(p). Later formulations have

therefore rephrased Harsanyi’s theorem as stating that a vNM and Paretian social welfare function is a

weighted sum of individual utilities plus a constant.
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Domotor (1979) was the first to prove this result without the additional assumptions that Harsanyi

implicitly imposed in his original article. Border (1981), reported in Selinger (1986) and Weymark

(1994), offers an accessible proof under the mild Pareto principle that if all agents are indifferent

between a pair of probability distributions then so is society; see also Hammond (1992). Domotor

also showed that stronger Pareto principles lead to positive or semi-positive weights on individual

utilities.

This note provides a simple and very short proof that poses Harsanyi’s theorem as a linear

programming problem; the weights on individual utilities are simply the dual variables or Lagrange

multipliers that arise at the solution of the problem, and which exist whether or not a constraint

qualification holds (see, e.g., Dantzig (1963, ch. 6, Theorems 3, 4)). One way to show that dual

variables exist is to apply the same Farkas lemmas on linear inequalities that Border (1981) utilizes in

his proof. But directly invoking the existence of the dual variables shortens the entire argument to two

sentences and appeals to the mathematical result most widely known in economic theory. To conclude

that the weights on individual utilities are positive or semi-positive requires stronger Pareto principles,

and then the necessary Farkas arguments become more intricate, particularly for positive weights

(Weymark, 1994; Turunen-Red and Woodland, 1999). The linear programming proofs remain just as

short or almost so.

The linear programming proofs and most of the literature on Harsanyi apply to preferences over

probability distributions on a finite number of social choices. Harsanyi’s theorem also holds when agents

and society have preferences over probability measures on a measurable space or, even more generally,

over lotteries in a mixture space (Domotor, 1979; Fishburn, 1984; Border, 1985; Hammond, 1992;

Coulhon and Mongin, 1989; De Meyer and Mongin, 1995; Zhou, 1997). As we will see, the general

mixture space setting reduces readily to the finite case: select a finite number of lotteries and their

mixtures and ignore the rest of the domain. To prove the general Harsanyi theorem, one simply notes that

if it were false, there would be finitely many lotteries on which social welfare does not equal a linear

combination of individual utilities (plus a constant), and that would contradict the finite Harsanyi

theorem. Existing proofs of the general Harsanyi theorem, even when relatively short, are not technology

free; Border (1985) may be the simplest and even it relies on a separation theorem applied to the set of

measurable functions. Since proving Harsanyi’s theorem amounts to finding a finite set of weights on

individual utilities (even when the utilities themselves are defined on a rich space), it is only fitting to

rely on nothing more than finite-dimensional separation, whether expressed from the Farkas or linear

programming point of view.

Given the reduction of the mixture case to the finite case, it is straightforward to show again that the

weights on individual utilities are positive or semi-positive under appropriately stronger Pareto

conditions, results that seem not to have been given elementary proofs.
2. Harsanyi’s theorem with a finite number of pure social choices

Each agent j in a finite set J has preferences over lotteries with prizes in a finite set S of social choices.

Letting D ¼ fpaR#S
þ :

P
iaS pi ¼ 1g denote these lotteries, we assume that each j has a von Neumann–

Morgenstern utility U j:DYR. That is, for each jaJ there is a u jaRS such that, for all paD,

U j(p)=pd u j. Social preferences over D are given by a von Neumann–Morgenstern utility W:DYR:

there is a waRS such that W(p)=pd w for all paD. Let D++ denote D\R++
#S .
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Definition 1. W and U= (U1, . . . ,U J ) satisfy

(i) Pareto indifference iff for all p, pVaD, U j(p)=U j(pV) for each jaJZW(p)=W(pV),
(ii) Semi-strong Pareto iff for all p, pVaD, U j(p)zU j(pV) for each jaJZW(p)zW(pV),
(iii) Strong Pareto iff semi-strong Pareto and for all p, pVaD, U j(p)zU j(pV) for each jaJ and

Ui(p)NUi(pV) for some iaJZW(p)NW(pV).

Our terminology in Definition 1 follows Weymark (1993). Notice that (iii)Z (ii)Z (i).

Theorem 1. If W and U satisfy Pareto indifference, there are aaR#J and baR such that for all paD,

W pð Þ ¼
X
jaJ

a jU jð pÞ þ b:

If W and U satisfy semi-strong Pareto, we may set a to be in R+
#J, and if they satisfy strong Pareto, we

may set a to be in R#J
++.

The equality in Theorem 1 may also be expressed as w ¼
P

jaJ a ju j þ be, where e is the vector of #S
1’s. We stress that Theorem 1’s second sentence says bmayQ rather than bmustQ: if, e.g., there are two

agents i and j with Ui=U j then evidently we may always set either ai or a j to be negative.

Proof. If semi-strong Pareto holds, then for any given pVaD the problem

min W pð Þs:t:U j pð ÞzU j pVð Þ; ja J ;
X
saS

ps ¼ 1; pz0;

must be solved at pV since otherwise there would be pUaD such thatW(pU)bW(pV) and U j(pU)zU j(pV)
for jaJ, which would violate semi-strong Pareto. Hence there exist Lagrange multipliers

a=(a1,. . .,aJ)aR+
#J and baR that satisfy the problem’s first order condition, which, if we select

pVaD++, is w ¼
P

ja J a
ju j þ be:

If Pareto indifference holds, the argument is identical except that for each jaJ we replace each

constraint U j(p)zU j(pV) by U j(p)=U j(pV). This modified problem must be solved at pV since

otherwise there would be a pUaD such that W(pU)bW(pV) and U j(pU)=U j(pV) for all j. Now the

Lagrange multipliers a lie in R#J rather than R+
#J.

If strong Pareto holds, then given pVaD and iaJ the problem

max Ui pð Þs:t:U j pð ÞzU j pVð Þ; ja Jq if g;W pð ÞVW pVð Þ;
X
saS

ps ¼ 1; pz0;

is solved at pV since otherwise there would be a pUaD such that U j(pU)zU j(pV) for all jaJ,

Ui(pU)NUi(pV) for i, and nevertheless W(pU)VW(pV). By again setting pVaD++, we conclude that,

for each iaJ, there are Lagrange multipliers (ci
1, . . . , ci

i� 1, ci
i + 1, . . . ci

J)aR+
#J� 1, diaR, and eiaR+

such that

ui þ
X

jaJq if g
c j
i u

j þ die ¼ eiw:
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Sum these J equalities and w ¼
P

jaJ a
ju j þ be, where aaR+

#J and baR are derived as in the

semi-strong case:

 
1þ

X
iaJ

ei

!
w ¼

X
iaJ

 
1þ ai þ

X
jaJq if g

cij

!
ui þ

 
bþ

X
iaJ

di

!
e:

Dividing by (1+
P

iaJ ei) concludes the proof. 5
3. Harsanyi’s theorem for an arbitrary mixture space

For kN1, let Dk� 1 denote raRk
þ:
Pk

i¼1 ri ¼ 1
n o

. Let S be a mixture space where for lotteries s1,

s2aS and paD1, the lottery p1s1+p2s2aS denotes their binary mixture.1 Taking binary mixtures as

primitive, one defines finite mixtures by induction: if for any t1, . . . ,tnaS and qaDn� 1,
Pn

i¼1 qiti is

defined, then for s1, . . . ,sn + 1aS and paDn, set

Xnþ1

i¼1

pisi ¼ pnþ1snþ1 þ 1� pnþ1ð Þ
Xn
i¼1

pi

1� pnþ1

si:

Each agent j in the finite set J has a utility Vj:SYR that satisfies the linearity property: for all paD1

and s1, s2aS, Vj(p1s1+p2s2)=p1V
j(s1)+p2V

j(s2). Social preferences are represented by a W: SYR

satisfying the same linearity property. For our purposes, what is important is that if ToS consists of the

mixtures of a finite number of lotteries in S then V j|T is an expected utility function. That is, given

s1, . . . ,sn aS and T ¼ saS: s ¼
Pn

i¼1 qisi
�

for some qaDn � 1}, then V j |T is given by

V j
Pn

i¼1 qisi
� 	

¼
Pn

i¼1 qiV
j sið Þ.

Our previous definition of the various Pareto principles applies unchanged to W and V=(V1,. . .,VJ) if

we replace D in Definition 1 by S.

Theorem 2. If W and V satisfy Pareto indifference, there exist aaR#J and baR such that, for all paS,

W ð pÞ ¼
P

jaJ a jV J ð pÞ þ b. If W and V satisfy semi-strong Pareto, we may set a to be R+
#J, and if

they satisfy strong Pareto, we may set a to be in R++
#J .

Proof. Viewing V j and W as elements of the vector space of functions from S to R, let B={Y1,. . .,Ym}

be a basis for sp {1, V1, . . . ,VJ}, where sp denotes span and 1: SY R equals 1 everywhere.

Suppose W and V satisfy Pareto indifference. If the conclusion given in the theorem were false, then

Wg sp B and so {Y1, . . . ,Ym,Ym +1uW} would be linearly independent. As we show below, linear

independence then implies there are ŝ1, . . . , ŝm + 1aS such that {ŷ1, . . . , ŷm, ŷm + 1u ŵ} is linearly

independent, where ŷkaRm + 1 is the vector whose ith coordinate is Y k (ŝi). Linear independence implies

there is no aaRm with
Pm

j¼1 a
jŷy j ¼ ŵw. Since B is a basis for sp {1, V1, . . . , VJ }, whenever

Y j (ŝ)=Y j(t) for ja{1, . . . , m} then V j(s)=Vj(t) for all jaJ. Hence since W and V satisfy Pareto
1
Formally, a mixture space is defined via a function from S	S	D1 to S whose image at (s1, s2, p) is denoted p1s1+p2s2 and where, for all

s1, s2aS and p, qaD1, (i) p1s1+p2s2=p2s2+p1s1, (ii) 1s1+0s2=s1, and (iii) p1( q1s1+q2s2)+p2s2=p1q1s1+(1�p1q1)s2.
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indifference, Pareto indifference holds for W and Y j, ja{1, . . . , m} and also therefore for W and the

Y j when restricted to fsaS: s ¼
Pmþ1

i¼1 qiŝsi for some qaDm}. Since W ðPmþ1
i¼1 qiŝsiÞ ¼ qd ŵw and

Y jðPmþ1
i¼1 qiŝsiÞ ¼ qd ŷyj for all qaDm, Theorem 1 implies there are aVaRm and bVaR such thatPm

j¼1 a
jVŷy j þ bVe ¼ ŵw, where e is the vector of m+1 1’s. Since bVea sp {ŷ1,. . . , ŷm } there exists aaRm

such that
Pm

j¼1 a
jŷy j ¼ ŵw. This contradiction establishes the first sentence of the Theorem.

We have invoked the fact that if X1,. . . , Xn are linearly independent real-valued functions on S, then

there are t1,. . . , tnaS such that {x̂1, . . . , x̂ n} is linearly independent, where x̂kaRn has the ith coordinate

X k(ti). This practically goes without proof but we give the details. Since {X1, . . . , Xn } is linearly

independent, X1 cannot everywhere equal 0 and so there is t1aS such that {x̂1
1uX1(t1)} is linearly

independent. Given {t1, . . . , tn}, X
k, and hVn, let x̂h

k, k=1, . . . , n, denote the vector in Rh with ith

coordinate X k(ti), i=1, . . . , h. Proceeding by induction, suppose for any ha{1, . . . , n�1} that there

are t1, . . . , th such that {x̂h
1, . . . ,x̂h

h} is linearly independent. Then there must be a laRh such

that
Ph

j¼1 l jx̂x
j
h ¼ x̂x hþ1

h . Since X 1; . . . ; X h; X hþ1 �
Ph

j¼1 ljX j are linearly independent, there is a th + 1
such that Xhþ1 thþ1ð Þ �

P h
j¼1 ljX j thþ1ð Þp 0. So fx̂x1hþ1; . . . ; x̂x

h
hþ1; x̂x

hþ1
hþ1 �

Ph
j¼1 ljx̂x

j
hþ1g and hence

x̂x1hþ1; . . . ; x̂x
hþ1
hþ1

� 

are linearly independent.

We turn to the semi-strong and strong cases. Since B is linearly independent, we may pick r1, ...,

rmaS such that B̄={ȳ1, . . . ,ȳm} is linearly independent, where each ȳ k a Rm has ith coordinate equal to

Yk(ri), i =1, . . . , m. Define v̄ j,w̄a Rm by setting their ith coordinates equal to Vj(ri) and W(ri),

respectively.

Lemma. If Pareto indifference holds and (a,b)aR#J + 1 satisfies
P

jaJ a
jv̄ j þ be ¼ w̄, thenP

jaJ a
jV j þ b1 ¼ W.

Proof of lemma. We have shown already that Pareto indifference implies Wa sp {1, V1, . . . , VJ }.

Hence, since B is a basis for sp {1, V1,. . . , VJ }, there exists aVaRm such that
Pm

j¼1 a
jVY j ¼ W . HencePm

j¼1 a
jVȳ j ¼ w̄, and since B̄ is linearly independent, aV is the only solution to this equality. Similarly

there is a caRm such that
Pm

j¼1 c jY j ¼
P

jaJ a
jV j þ b1 and therefore

Pm
j¼1 c jȳ j ¼ w̄. So c=aV andP

jaJ a
jV j þ b1 ¼ W , proving the lemma.

If semi-strong Pareto holds, apply Theorem 1 to the utilities V̄ j and social welfare W̄, each defined on

Dm - 1, and given respectively by V̄j(q)=qd v̄ j, j a J, and W̄(q)=qd w̄ to conclude there are aaR+
# J and

baR such that
P

jaJ a
jv̄ j þ be ¼ w̄ . The lemma then implies

P
jaJ a

jV j þ b1 ¼ W . If strong Pareto

holds, apply Theorem 1 to conclude that aaR++
#J , and again apply the lemma. 5
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